EVIDENCE OF SOURCE MISATTRIBUTIONS IN FACIAL IDENTIFICATIONS

Sarah Kulkofsky

Abstract

Much research has been conducted on the effect of misleading post-event information, however this effect has not been studied as extensively for facial identifications. The purpose of the present research was to investigate if source misattributions can explain errors made by participants who read a description of a face prior to identification. Two experiments were conducted in which participants read either an accurate description of a previously viewed face, an inaccurate description that accurately described another individual in the line-up, or a control paragraph. Participants in the inaccurate condition chose the wrong individual that their paragraph described more often then the other conditions. Additionally, the inaccurate group produced more errors overall than the accurate group. The results are consistent with the source misattribution hypothesis.

Evidence of source misattributions in facial identifications

A growing literature on eyewitness research suggests that misleading post-event information can affect the quality of reports given by an eyewitness, and finding known as the misinformation effect (see Lampien, Neuschatz, & Payne, 1998 for review). The common paradigm for this research was developed by Elizabeth Loftus in the early 1970s and has since been used in a variety of studies. In most studies participants view a series of slides depicting an event. Some participants are then given misleading or inaccurate verbal information about the previously viewed event while others are provided with neutral descriptions or narratives. On memory tests these participants often say that they remember seeing items that were merely suggested to them (Belli, Lindsay, Gales, & McCarthy, 1994; Higham, 1998; Lindsay & Johnson, 1989; Loftus, Miller, & Burns, 1978; Zaragoza & Lane, 1994).

There has been much debate over the mechanisms underlying the misinformation effect. Some theorists claim that the original memory trace is overwritten by the new information and thus cannot be retrieved (e.g. Loftus, et al., 1978) while others suggest that the misinformation only serves as a guessing mechanism when participants cannot remember the original information (e.g. McClosky & Zaragoza, 1985). The source-monitoring framework proposed by Johnson and her associates (Johnson, Hashtroudi,
Lindsay, 1993) has also been suggested as a plausible explanation for the misinformation effect.

Source monitoring refers to an individual’s ability to accurately attribute the origins of his or her memories (Johnson, et al., 1993). When participants in the misleading information paradigm are asked to report what they saw in the original sequence, they are essentially being asked to make a source attribution for their memory. They must decide if the information they are retrieving occurred in the context of the original slide sequence, from the information they received post-event, or even from a completely unrelated experience. According to this theory the misinformation effect occurs when participants misattribute their memories of the suggested information to the original slides (Johnson, et al., 1993; Lindsay & Johnson, 1989; Zaragoza & Lane, 1994).

A number of studies suggest that source misattributions may explain the misinformation effect (Lindsay & Johnson, 1989; Zaragoza & Lane, 1994). Lindsay and Johnson (1989) found that when misled participants were given a “source monitoring” test, that is when they were oriented to consider the source of their memories during test, they did not exhibit the suggestibility effects that were seen when participants were simply given a yes/no recognition test. Presumably, participants who were oriented towards the source of their memories by the test conditions were able to attribute the familiar item to the narrative presented after the slides, rather than to the slides themselves.

An interesting aspect of all of these studies is that verbally presented information is confused with visually presented information. It could be that participants are encoding the visual information verbally or are encoding the verbal information visually. Other experiments using different paradigms have also demonstrated that individuals sometimes confuse verbal information with visually presented information (Intaraub & Hoffman, 1992). For example, Intaraub and Hoffman (1992) found that when participants were presented a series of detailed photographs and then read paragraphs describing complex scenes, they often reported remembering photographs that had not been seen. Since the scenes were complex and thus not likely to be easily verbalized for detail it is likely that these participants imagined the verbal information presented to them and then formed an internal visual representation of the complex scenes. They then believed the imagined scene to be an actual photograph they had seen.

Applied memory research, such as that mentioned above, is often conducted in order to gain information that may be useful in the criminal justice system. The applicability of the previously mentioned studies to a forensic setting is somewhat disputable. One might question how remembering seeing a Foldger’s coffee can in a series of slides, such as in Zaragoza and Lane (1994), really relates to recalling the events of a car accident or identifying a possible suspect from a photo line-up. With over 77,000 people a year in the United States prosecuted for crimes based mostly on eyewitness testimony (Goldstein, Chance, & Schneller, 1988) and with mistaken eyewitness identifications accounting for the bulk of wrongful convictions (Lampien, et al., 1998) the ability of eyewitnesses to make accurate facial identifications is of much concern for researchers. Therefore, it is interesting and important to investigate whether the source misattribution effect can also be seen for facial recognition tasks similar to those used by forensic investigators.
While there is much research pertaining to eyewitness behavior (Haber & Haber, 2000; Wells, Malpass, Lindsay, Fisher, Turtle, & Fulero, 2000) little research explores the misinformation effect as it relates to facial identifications. Some research suggests that seeing an innocent bystander about the same time as seeing the perpetrator of a crime may cause some individuals to confuse the two, a phenomenon known as unconscious transference (e.g. Brown, Deffenbacher, & Sturgill, 1977; Loftus, 1976; Ross, Ceci, Dunning, & Toglia, 1994). This possibly may occur because of source misattributions. That is, individuals may confuse the memory of one individual they have seen with their memory of the perpetrator. As Ross (1994) points out, the source misattribution theory suggests that when unconscious transference occurs, people realize that they have seen two different individuals but they are confusing the memories of both. However, Ross and his associates (1994) suggest that rather than reflecting an error of source monitoring, unconscious transference reflects conscious inference. According to this view individuals believe that the bystander and the assailant are in fact the same person rather than knowing they are two different people but confusing the two. Unconscious transference research also differs from most research on source misattributions because rather than confusing verbal with visual information, individuals are confusing visual with visual information. Therefore the work on unconscious transference may provide little insight into understanding the relationship between source misattributions and mistaken facial identification.

Schooler and associates (Dodson, Johnson, & Schooler, 1997; Mechler & Schooler, 1996; Schooler & Engstler-Schooler, 1990) have identified a possibly similar phenomenon to the misinformation effect. Schooler and Engstler-Schooler (1990) presented their participants a video of a staged robbery. Following viewing the video some of the participants wrote descriptions of the robber, while others completed a filler activity. Schooler and Engstler-Schooler (1990) found that individuals who described the robber performed worse on a recognition test. They argued that individuals who did not describe the face based their identifications on their visual memory for the face while those who wrote the description based their identification on the verbal representation they created. Schooler and Engstler-Schooler (1990) have termed this phenomenon the verbal over-shadowing effect.

The verbal overshadowing effect may, initially, look similar to results obtained from previous memory experiments such as Loftus et al. (1978), Zaragoza and Lane (1994), and Intaraub and Hoffman (1992). Possibly, Schooler and Engstler-Schooler’s (1990) participants confused the source of the visual memories created when they described the perpetrator with the actual memory of the perpetrator seen in the video. Since the image they created from their description does not perfectly match the actual face they saw, these individuals have difficulty identifying the correct face from the photo line-up. However, more recent research suggests that rather than representing source misattributions, verbal overshadowing represents a shift in processing that occurs when an individual attempts to verbalize a face (Dodson, et al., 1997; Westerman & Larsen, 1997).

For example, Dodson and associates (1997) found that when participants describe a completely unrelated face, such as that of their parent, they are impaired just as much as individuals who describe the target face. The authors suggest that if source misattributions caused verbal overshadowing then participants would only confuse their
descriptions when the described face was similar to the target face since research suggests that errors in source monitoring tend to occur when suggested or imagined stimuli are similar to actually perceived stimuli (Henkel & Franklin, 1998). Since source attributions are under some degree of conscious control, individuals may decide that the image they are retrieving is not the image that was previously presented. It is unlikely that participants asked to describe their mother would then confuse their image of their mother with the image they saw in a film. Since the degree of familiarity did not affect their results Dodson and associates (1997) rejected the source misattribution explanation for verbal overshadowing.

The shift in processing perspective suggests that verbalizing facial features orients individuals to focus on easily verbalizable features, which may not be as useful as focusing on the face as a whole. Even when individuals are asked to describe an unrelated face their processing of facial characteristics is shifted during the subsequent identification. This hypothesis is supported by earlier research that has found verbal labels direct attention to specific facial features consistent with those labels (McKelvie, 1976).

However, Dodson et al. (1997) also found that when participants were given a verbal description, rather than generating it on their own, they were also impaired on recognition tasks. The authors suggest that in this case, source confusions may be the cause of participants’ decreased recognition ability. That is, internal representations that are produced by reading the description may be confused with the perceptual representation produced from seeing the face. While Dodson and his associates (1997) suggest source misattributions to be the cause of impaired recognition, they provide little evidence supporting this claim. For example, they did not test whether the similarity between the provided description and the target face had an effect on eyewitness accuracy.

A number of interesting empirical questions are raised by the possibility the verbal overshadowing effect for a face described by someone else is the result of source misattributions. For example, if individuals are given accurate descriptions versus descriptions that are similar yet contain some inaccurate information, how do they respond? From a source monitoring approach, if individuals read an inaccurate description that is not blatantly unlike the individual they originally saw, that is, one that may easily be confused with the original target, participants may perform even worse in recognition tasks. For example, if the description contains an inaccurate salient characteristic, such as eye color, participants may remember the original face possessing this feature. When faced with a photo line-up of similar looking individuals, participants then may chose an individual with this characteristic which the target individual does not possess. The purpose the reported research is to explore this possibility.

In the following two experiments, participants were asked to view a series of static slides depicting common college scenes, such as individuals studying or academic buildings. One of the slides was a photograph of a young male posing candidly. Participants were then given a verbal description and were asked to identify the young man from a photo line-up. For the accurate condition, this description correctly identified a number of key facial features of the individual viewed in the slides. For the inaccurate condition the description was not of the male viewed in the slides, but rather a similar
looking individual who was also included in the line up (the foil). A third control group will read no facial descriptions but rather a short non-descriptive paragraph.

I am interested in both quantitative and qualitative differences in errors made between groups. In line with Dodson and associates (1997) and other paradigms relating to source monitoring (e.g. Belli et al, 1994; Lindsay & Johnson, 1989; Zaragoza & Lane, 1994) I hypothesized that the control group would likely perform best since there should be no verbal over-shadowing effect. Additionally, this group will provide baseline hit rates for the target and the likelihood that the foil may be erroneously chosen. I also predicted that the inaccurate group would make more errors than the accurate group since the descriptions they read contained some untrue salient characteristics. Furthermore, these individuals should be more likely to choose the foil in the line-up that resembles the inaccurate description compared to the accurate group or the control group as the foil displays salient characteristics reported in the description. If, though, the verbal overshadowing effect seen for descriptions given by someone else is not the result of source misattributions there should be no difference in the quantity or quality of errors between the accurate or inaccurate group. Both groups should have equal trouble identifying the target since both groups read similar descriptions. However, I predicted that the effects previously observed by Dodson et al. (1997) are the result of source misattributions and therefore, differences in the errors of two experimental groups would be observed.

These predicted differences in errors, though, may not reflect a memory impairment. Participants may be well aware that they are basing their decisions on the verbal description. This is a real possibility, since Dodson et al. did not attempt to discover the source of their participants’ memories as other source misattribution studies have (i.e. Belli et al., 1994; Zaragoza & Lane, 1994). To test for this possibility, participants will be given a post-test designed to identify the reasoning behind their decisions.

In sum, this research differs from previous work on source misattributions (Belli et al., 1994; Lindsay & Johnson, 1989; Zaragoza & Lane, 1994) by specifically relating the concept to facial identifications. While other authors have conducted similar research (Dodson et al, 1997), they have not specifically tested the hypothesis that impaired recognition after reading a verbal description of a face is due to source misattributions. The two experiments reported here attempt to answer this question based on behavioral data (how the participants perform on the recognition task) and by explicitly asking participants for the source of their decisions.

Experiment 1

Method

Participants

The participants were 36 undergraduate Colgate students recruited primarily from the Introduction to Psychology participant pool and who participated in the study in order to fulfill partial course requirements. The participants were primarily female (N = 23) and Caucasian (N = 28). Each participant was randomly assigned to one of three experimental conditions: control, inaccurate description, or accurate description. They all signed an
informed consent prior to participation and were fully debriefed after the completion of
the study.

Materials

Slides.
All participants viewed a series of 20 slides presented as a Microsoft Power Point
presentation via a video projector. The slide sequence contained photographs of young
people along with familiar Colgate scenes (such as the exterior of residence halls and
academic buildings). Twelve photographs were of people and 8 were of buildings or
landmarks. Among the slides was one target slide depicting a young man between 15 and
18 years old sitting near a plant, facing the camera, and smiling. The slide sequence was
arranged in a random order except that the target photo was placed in the eighth position.
This random order was consistent across all trials. Each photograph was taken with a
standard 35 mm camera on color print film and developed on 6 in wide by 4 in tall paper.

Written Descriptions and Photo Line-Up.
Seven young males, between 15 and 18 years old volunteered to be photographed
for the study. All were Caucasian with light brown to black hair. In order to assure that
the participants would have no prior contact with any of the stimulus faces, the males
were recruited from the experimenter’s hometown (Marion, Ohio) opposed to individuals
at Colgate University. Each male was photographed in the candid pose for use in the slide
presentation wearing normal street clothes and smiling at the camera. They were then
photographed wearing a solid white T-shirt against a cream colored back drop. They
were instructed to look directly at the camera and told not to smile. The photographer
stood approximately 5 feet from each individual and the photograph was framed so that
only the shoulder, neck, and head area appeared in the photograph. Each photograph was
taken with a standard 35 mm camera on color print film and developed on 6 in wide by 4
in tall paper.

The experimenter then wrote a written description of each of the seven young
men. The description included the salient characteristics of hairstyle, hair color, and eye
color. Additionally facial features including eye shape, nose shape, jaw line, forehead
height, lip thickness, and brow shape and length were described. These particular features
have been found to contribute to the distinctiveness and memorability of a face (Bruce,
Burton, & Dench, 1994). Three to five raters read each description and attempted to
match it to its corresponding “mug shot” photograph. All photographs yielded an equally
high hit rate, thus 6 photographs were chosen based on the quality of the print. (The
excluded photograph was out of focus in the candid shot and the “mug shot” photo
showed writing on the individual’s shirt).

Each photograph was randomly paired with another photograph so that when
photograph A in the pair is the target, photograph B will always be the foil. Six versions
of the slide show were prepared, with each possible photograph being placed in the target
position.

The photo line-up consisted of the six photographs chosen to be included as
stimuli in the study. Only one line-up was prepared. Since the target changes across
conditions, his position in the line-up will change as well. For example, when target A
appears in the slide show, he is in the first position and his foil is in the third. However,
when target B appears in the slide show, he is in the second position and his foil is in the sixth. The line-up was constructed so that a target and his foil are not placed in consecutive positions.

Procedure

Participants first viewed the slideshow in experimental sessions in small groups of variable sizes. Each slide was presented for 5 s. Participants were instructed to pay close attention to the slides and told that a memory test would be given following the slide presentation. Following completion of the slide show all participants completed a filler activity solving math problems for 5 min. Following this filler activity participants in the inaccurate and accurate description conditions were given the description. The descriptions were prefaced with the following:

We’re interested in your ability to recognize complex scenes. In a few minutes, you will be asked to recall some details of the following scene: One of the slides depicted a young man sitting near a plant.

Following this introduction the accurate or inaccurate description was presented. The participants were told to read the description as many times as necessary to jog their memory of the slide in question. Control subjects read a short paragraph of equal length to the descriptions. This paragraph was taken from the Colgate University catalogue and contained few visual descriptors. Participants were given enough time to read the paragraph as they needed.

Once all participants had indicated they were finished reading, they were then given the recognition test. Instructions were given both verbally and in written form. Participants were told that they were about to view a line up of 6 young men and were asked to identify the young man they saw sitting near the plant in the slide show. Participants were also be warned to only rely on their memory from the slides and to disregard any other information they may have received about the slide. The line-up was then presented via a video projector and each individual was asked to record the correct face on his or her answer sheet. Participants were given as much time as needed to make their line-up decision.

Following the line up decision each participant was given a short 5-question multiple-choice questionnaire. There was one target question of interest in this experiment: On what basis did you make your decision about the identification? The possible answers to this question were: A) I remember him from the slide show, B) He just seemed familiar to me, C) I recognized him from a description I read after the slideshow, D) I simply guessed. After completing the questionnaire participants were thanked for their participation and fully debriefed.

Results and Discussion
Twelve participants were randomly assigned to the control condition, 11 to the accurate condition, and 13 to the inaccurate condition. The results are summarized in Figure 1.

Participants in the inaccurate condition chose the foil more than participants in the accurate and control conditions (2 opposed to 0). Additionally, participants in the inaccurate condition committed more errors overall. “Inaccurate” participants were incorrect 46% of the time opposed to control participants who were incorrect only 25% of the time and “accurate” participants only 18% of the time. However, a chi-square test found this pattern of results non significant ($\chi^2 = 4.67, p > .05$). Thus, while the pattern of results were clear, they were not significant. Additionally, the pattern is not wholly consistent with the predicted results. Participants in the accurate condition performed no differently than control participants, showing no sign of the verbal overshadowing effect.

Experiment 2 was designed to correct some possible design flaws of the first experiment. First, in general, participants were very good at the task. Overall very few errors were committed (70% of all responses were correct). Thus, the task may be simply too easy. In order to increase the difficulty of the task, which will likely result in more errors overall, the speed at which the slides were presented was increased from 5 sec to 2 sec. Additionally, the target was previously the only male in the slide presentation, however in Experiment 2 the slide show contained more male faces and a wider variety of individuals overall. Finally, the source misattribution theory suggests that errors occur because individuals confuse two separate memory traces. In the previous design, participants were asked to make a photo identification immediately after reading the description. Thus, the description was likely very fresh in their mind and they may be more resistant to confusing the memory with the memory for the slide. Higham (1998) has previously demonstrated that the length of time between the target presentation and test rather than the length of time between test and misinformation may account for the potency of the misinformation effect. Therefore, in experiment 2, participants completed a filler activity both after viewing the slide show and after reading the description. I predicted that these minor changes would not qualitatively change the results of experiment one, but rather produce a more pronounced trend and obtain statistically significant results.

Experiment 2

Method

Participants

Forty-four undergraduate Colgate students were recruited primarily from the Introduction to Psychology participant pool. Most participated in order fulfill partial course requirements. The majority of participants were female ($N = 31$) and Caucasian ($N = 38$). Each participant was randomly assigned to one of three experimental conditions: control, inaccurate description, or accurate description and the participants. They all signed an informed consent prior to participation and were fully debriefed after the completion of the study.

Materials
The materials were exactly the same as Experiment 1, except that 6 slides depicting individuals already seen in other photographs in the sequence were replaced with 6 new slides, 4 of which were photographs of males.

Procedure
The procedure was exactly the same as Experiment 1, except that the slides were each presented for 2 s rather than 5s. Additionally following reading the description paragraph and making the line-up decision, participants were given a 5 min distracter task, which was simply a continuation of the previous math problems task.

Results and Discussion
Fourteen participants were randomly assigned to the control condition, 15 to the accurate condition, and 15 to the inaccurate condition. The results of their line up decision are summarized in Figure 2.
Participants in the inaccurate condition chose the foil more than participants in the accurate and control conditions (3 opposed to 0). Additionally, participants in the inaccurate condition committed more errors overall. “Inaccurate” participants were incorrect 47% of the time opposed to control participants who were incorrect 36% of the time and “accurate” participants who were only 20% of the time. However chi square test found these patterns of results nonsignificant ($\chi^2 = 7.93, p > .05$). Thus just as in Experiment 1, while the pattern was clear, the results were not significant.

Two explanations may be made for the null findings in Experiment 1 and 2. One is that we may accept the null hypothesis and assume that description type does not affect line up choice. An alternative explanation is that the nonsignificant findings reported are simply the result of a small sample size. It could very possibly be that with a larger N exhibited the same pattern of results statistically significant findings may be obtained.

One way to test this hypothesis without recruiting additional participants is to pool the data from both Experiments 1 and 2. Recall that the methodological changes made to Experiment 2 were not designed to make qualitative changes to the data; rather I had expected that the changes would make the pattern stronger. However, despite slight changes, the pattern of results were quite similar (a chi-square test comparing each condition across experiments showed nonsignificant results). Theoretically as well, if the misinformation effect is a real effect it should not matter if the stimuli were exposed for 5 rather than 2 seconds or if participants test immediately or 5 minutes after reading the description. These changes were slight, and did not have an effect on the results, thus it is reasonable to combine the data from both experiments together.

Data for the pooled experiments are shown in Table 1. A chi square test was performed on pooled data from Experiment 1 and Experiment 2 and yielded significant results ($\chi^2 = 11.53, p < .05$). Participants in the inaccurate condition chose the foil significantly more times than those in the other conditions. Additionally when comparing overall errors (foil and misses combined) inaccurate participants made more errors than accurate participants.

General Discussion

Colgate University Journal of the Sciences 111
The results of the two experiments reported here are consistent with the hypothesis that source misattributions account for the decrement to performance in line-up identification observed when an individual reads a description written by someone else. Participants who were given an inaccurate description of an individual that described someone else in the photo line-up, were more likely to choose the person whom their paragraph described. This is consistent with the notion that participants confuse the image created when they read a misleading paragraph with the actual image they saw in the slide show.

One unexpected finding was that participants in the accurate condition did surprisingly well and showed no signs of exhibiting the verbal overshadowing effect. While not significantly so, the accurate condition chose the target more times than any other group. Additionally, when total errors were combined, the accurate condition made significantly fewer errors than the inaccurate condition. This is interesting since previous work indicated that even accurate descriptions would impair facial identifications (Dodson, et al., 1997). However, these findings are not completely inconsistent. In the previous paradigm participants were given general descriptions written by other participants in the study. Additionally, the line-up was constructed so that if one were given a general description he or she could not tell whom it was describing (Dodson, et al., 1997). In this study, on the other hand, the descriptions were very detailed and while the individuals in the line-up were similar looking, many of the individuals had salient characteristics (such as eye color or hair style), which could easily differentiate him from the others in the line-up.

These methodological differences could account for the different findings between these two studies. Since the description given to participants in Dodson, et al. (1997) could have possibly described any individual in the line-up the participants could create a mental image that was equally similar to all individuals in the line-up. When none of the choices perfectly matched their mental representation, they may have decided to choose the picture they thought was closest, which would actually result in a random choice. However, if source misattributions were occurring with participants in the accurate condition of this study, and they decided to choose the individual who was “most like” the one they remembered, they would still chose the target since he was most like their description. In fact, the tendency for accurate participants to chose the target more than any other group may actually provide further evidence to support the source misattribution hypothesis.

The data presented here are not unequivocal proof that source misattributions account for errors observed when participants are asked to read a description of a face written by someone else. For one, it is not perfectly clear whether or not participants actually remembered seeing the foil face or if they chose it based on the description alone, although they were warned not to base their description on anything else they had read. I attempted to ascertain the answer to this question through the post-test questionnaire, but I found that this did not prove to be a useful tool. Most participants chose the either the “I recognized him from the slide” or “He seemed familiar to me answers.” Additionally, some participants in the inaccurate condition said they based their choice on the reading, yet they correctly identified the individual. In one case the correct choice was a 16 year old with strait, short hair and a dark complexion. The
paragraph the participant “based” her choice on described a 17 or 18 year old with long floppy curly hair and a fair complexion. Therefore, it seems that the answers given do not necessarily represent how the participants were making their choices. Future research should attempt to develop better methods of discerning on what basis participants were making their decisions.

Additionally, it is not clear from this study whether participants generated a global image of the face in question or if they simply picked certain characteristics to focus on. That is, after reading the paragraph the participants may not have had a clear mental image of the face but rather they may have simply remembered one or two aspects. If asked before they were given the photo line-up whether or not they clearly remembered the face in question participants might have responded with something like “I’m not sure exactly what he looked like, but I remembered he had curly hair.” It is not clear from these experiments if this is the case or if participants really had a complete facial representation in mind when they made their line-up decisions.

Furthermore, while the results are consistent with the source misattribution hypothesis, they are not necessarily consistent with the predictions. While the issue of a failure to see any verbal overshadowing effect for the accurate condition may be adequately explained, the inaccurate condition did show clear signs of verbal overshadowing as well. They did not commit any more errors than the control group, based both on comparisons of the “miss” and “target” data. The inaccurate group did chose the target less often, but it was not significantly so. It is not clear if this finding is a statistical anomaly and if more participants were run the results would be significant, or if it is a real problem with the data.

Despite the limitations of the current research, the data are still consistent with and support the source misattribution hypothesis. To date, there are no studies supporting the possibility that source misattributions may occur in facial identifications. Even with the afore mentioned limitations, the fact that this research is the first study to support the hypothesis that source misattributions can occur with facial identifications makes the contribution of this research significant. Future studies should be conducted in order to address some of the problems that exist with this research. Furthermore, the source misattribution hypothesis makes other predictions that can be tested empirically. For example, if participants are asked to read a description that is inaccurate though not easily confusable with the target they should show no detriment in performance. Likewise, if the difference between the accurate condition in this study and the descriptions in Dodson et al., (1997) is really do to the level of detail in the descriptions, then performance on an identification test comparing detailed accurate and generally accurate descriptions should provide results similar to this study. That is, the “general” group would perform similar to the inaccurate group and make more errors than the detailed accurate group. Future research in this area may prove to be fruitful in providing answers to these questions.
Figure 1. Number of participants who chose target, foil, or neither (miss) as a function of condition, Experiment 1.
Figure 2. Number of participants who chose target, foil, or neither (miss) as a function of condition, Experiment 2.
Table 1
Combined Data from Experiments 1 and 2 Indicating Percentage of Participants That Chose Target, Foil, or Neither (Miss), as a Function of Condition

<table>
<thead>
<tr>
<th>Condition</th>
<th>Target</th>
<th>Foil</th>
<th>Miss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>69</td>
<td>0</td>
<td>31</td>
</tr>
<tr>
<td>Accurate</td>
<td>81</td>
<td>0</td>
<td>19</td>
</tr>
<tr>
<td>Inaccurate</td>
<td>54</td>
<td>18</td>
<td>29</td>
</tr>
</tbody>
</table>

Note. N = 80.
References

